Comparative Study of Bone Repair Using Porous Hydroxyapatite/ β-Tricalcium Phosphate and Xenograft Scaffold in Rabbits with Tibia Defect
نویسندگان
چکیده مقاله:
Background: Bone tissue engineering requires materials that are biocompatible, mechanically suited for bone function, integrated with the host skeleton, and support osteoinduction of the implanted cells for new bone formation. The aim of this study was to compare the osteogenic potential of xenograft with hydroxyapatite/β- tricalcium phosphate (HA/β-TCP) scaffold. Methods: New Zealand rabbits (n = 9) were divided into 3 groups. Osteoblast cells were originally isolated from rabbit iliac crest and cultured in DMEM/F12. After creating a critical-sized defect (2 × 3 cm) in rabbit tibia bone, the defect was filled with an implant of HA/TCP with osteoblasts and xenograft in the hole of left (as control) and right tibia, respectively. The new bone formation and the development of bone :::union::: within the defect were evaluated by x-ray images and eosine and hematoxylin staining at 4, 8, and 12 weeks post-operation. Results: The bone partially formed in both groups was filled with osteoblast cultured on porous implants at 4 weeks. Over time, progressive bone regeneration was observed inside the pores. Moreover, a progressive vascular ingrowth and progressive integration with the host bone were obvious in xenograft when compared to HA/β-TCP. A good integration between the xenograft implants and the bone was observed radiographically and confirmed by histological section. Conclusion: The result showed that the bone defect can be repaired using both synthetic and xenograft implants. However, the xenograft showed a better osteointegration as compared to HA/β-TCP scaffold.
منابع مشابه
comparative study of bone repair using porous hydroxyapatite/ β-tricalcium phosphate and xenograft scaffold in rabbits with tibia defect
background: bone tissue engineering requires materials that are biocompatible, mechanically suited for bone function, integrated with the host skeleton, and support osteoinduction of the implanted cells for new bone formation. the aim of this study was to compare the osteogenic potential of xenograft with hydroxyapatite/β- tricalcium phosphate (ha/β-tcp) scaffold. methods: new zealand rabbits (...
متن کاملComparative study of bone repair using porous hydroxyapatite/ β-tricalcium phosphate and xenograft scaffold in rabbits with tibia defect.
BACKGROUND Bone tissue engineering requires materials that are biocompatible, mechanically suited for bone function, integrated with the host skeleton, and support osteoinduction of the implanted cells for new bone formation. The aim of this study was to compare the osteogenic potential of xenograft with hydroxyapatite/β- tricalcium phosphate (HA/β-TCP) scaffold. METHODS New Zealand rabbits (...
متن کاملEvaluation of Possible Beneficial Effect of Tricalcium Phosphate/Collagen (TCP/collagen) Nanocomposite Scaffold on Bone Healing in Rabbits: Biochemical Assessments
Objective- The aim of this study was to evaluate possible beneficial effect of tricalcium phosphate/collagen (TCP/collagene) nanocomposite scaffold on bone healing in rabbits using biochemical assessmentsDesign- Experimental studyAnimals- Twelve healthy male white New Zealand rabbitsProcedures- The rabbits wer...
متن کاملEffects of Titanium Mesh Surfaces-Coated with Hydroxyapatite/β-Tricalcium Phosphate Nanotubes on Acetabular Bone Defects in Rabbits
The management of severe acetabular bone defects in revision reconstructive orthopedic surgery is challenging. In this study, cyclic precalcification (CP) treatment was used on both nanotube-surface Ti-mesh and a bone graft substitute for the acetabular defect model, and its effects were assessed in vitro and in vivo. Nanotube-Ti mesh coated with hydroxyapatite/β-tricalcium phosphate (HA/β-TCP)...
متن کاملDevelopment of an antibacterial porous scaffold for bone defect treatment
Background & Aim: The use of bone scaffolds is one of the new and efficient techniques for repairing bone defects that provide a suitable platform for cell proliferation and growth to repair the target tissue. One of the most important causes of failure of transplants and surgical procedures is the invasion of bacteria at the site of the complication and the development of severe infection. The...
متن کاملbone repair with differentiated osteoblasts from adipose‑derived stem cells in hydroxyapatite/tricalcium phosphate in vivo
background: recently, tissue engineering has developed approaches for repair and restoration of damaged skeletal system based on different scaffolds and cells. this study evaluated the ability of differentiated osteoblasts from adipose‑derived stem cells (adscs) seeded into hydroxyapatite/ tricalcium phosphate (ha‑tcp) to repair bone. methods: in this study, adscs of 6 canines were seeded in ha...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 16 شماره 1
صفحات 18- 24
تاریخ انتشار 2012-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023